Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
AMT cover
Executive editors:

Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, as well as in situ and laboratory measurement techniques for the constituents and properties of the Earth's atmosphere.

The main subject areas comprise the development, intercomparison, and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.


Institutional agreement for AMT authors affiliated with the Leibniz Universität Hannover

11 Jan 2016

Copernicus Publications and the Technische Informationsbibliothek (TIB) in Hanover, Germany have signed an agreement on central billing of article processing charges.

AMT awarded DOAJ Seal

16 Dec 2015

Atmospheric Measurement Techniques (AMT) has received the new DOAJ Seal which recognizes journals with an exceptionally high level of publishing standards and best practice.

Workflow of AMT reorganized

10 Dec 2015

We have summarized the upcoming changes to AMT by the end of the year.

Recent articles

Highlight articles

New radiosonde instruments for humidity-, radiation- and gas profile measurements were introduced in recent years, for atmospheric research and climate monitoring. Such instruments are intended to be reused on multiple flights. Here we introduce the return glider radiosonde (RGR), which enables flying and retrieving valuable in situ upper-air instruments. The RGR is lifted with weather balloons to a preset altitude, and a built-in autopilot flies the glider autonomously back to the launch site.

A. Kräuchi and R. Philipona

Using data from a new airborne Hyperspectral Thermal Emission Spectrometer (HyTES) instrument, we present a technique for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution, that permits direct attribution to sources in complex environments.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes

This paper is presenting a feasibility study focused on methods of estimating the turbulence intensity based on a class of navigational messages routinely broadcast by the commercial aircraft (known as ADS-B and Mode-S). Using this kind of information could have potentially significant impact on aviation safety. Three methods have been investigated.

J. M. Kopeć, K. Kwiatkowski, S. de Haan, and S. P. Malinowski

We validate 2-D ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. The method is based on Bayesian statistical inversion. We employ ionosonde measurements for the choice of the prior distribution parameters and use a sparse matrix approximation for the computations. This results in a computationally efficient tomography algorithm with clear probabilistic interpretation. We find that ionosonde measurements improve the reconstruction significantly.

J. Norberg, I. I. Virtanen, L. Roininen, J. Vierinen, M. Orispää, K. Kauristie, and M. S. Lehtinen

We present the development of a new airborne mass spectrometer AIMS-H2O for the fast and accurate measurement of water vapor in the upper troposphere and lower stratosphere. The high accuracy needed for e.g. quantification of atmospheric water vapor transport processes or cloud formation is achieved by an in-flight calibration of the instrument. AIMS-H2O is deployed on the DLR research aircraft HALO and Falcon where it covers a range of water vapor mixing ratios from 1 to 500 ppmv.

S. Kaufmann, C. Voigt, T. Jurkat, T. Thornberry, D. W. Fahey, R.-S. Gao, R. Schlage, D. Schäuble, and M. Zöger

Publications Copernicus