Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
  • CiteScore<br/> value: 3.59 CiteScore
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
AMT cover
Executive editors:
Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, as well as in situ and laboratory measurement techniques for the constituents and properties of the Earth's atmosphere.
The main subject areas comprise the development, intercomparison, and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. Papers submitted to AMT must contain atmospheric measurements, laboratory measurements relevant for atmospheric science, and/or theoretical calculations of measurements simulations with detailed error analysis including instrument simulations. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.


New article processing charges for AMT

05 Dec 2017

From 1 January 2018 Atmospheric Measurement Techniques (AMT) will slightly increase the article processing charges.

New institutional agreement between the PIK and Copernicus Publications

24 Aug 2017

Authors from the Potsdam Institute for Climate Impact Research (PIK) will profit from a new institutional agreement with Copernicus Publications starting 23 August 2017. The agreement which is valid for the first author enables a direct settlement of article processing charges (APCs) between the PIK and the publisher.

Update of publication policy

04 Jul 2017

The updated publication policy now is extended by the journal's open access statement, its archiving and indexing scheme, and explicit policies on corrections and retractions.

Recent articles

Highlight articles

Tropical atmospheric variability is often described using proxy indices of the Quasi-Biennial Oscillation and the El Niño-Southern Oscillation. We introduce new proxies derived from GNSS radio occultation (RO) satellite measurements. Using the high vertical resolution of the RO temperature fields we obtain altitude-resolved indices which can improve the description of atmospheric variability patterns and can be used in climate studies where a detailed knowledge of these patterns is required.

Hallgeir Wilhelmsen, Florian Ladstädter, Barbara Scherllin-Pirscher, and Andrea K. Steiner

Low-cost sensors promise neighborhood-scale air quality monitoring but have been plagued by inconsistent performance for precision, accuracy, and drift. CMU and SenSevere collaborated to develop the RAMP, which uses electrochemical sensors. We present a machine learning algorithm that overcomes previous performance issues and meets US EPA's data quality recommendations for personal exposure for NO2 and tougher "supplemental monitoring" standards for CO & ozone across 19 RAMPs for several months.

Naomi Zimmerman, Albert A. Presto, Sriniwasa P. N. Kumar, Jason Gu, Aliaksei Hauryliuk, Ellis S. Robinson, Allen L. Robinson, and R. Subramanian

Microwave radiometers have the capability of observing temperature and humidity profiles with a few minute time resolution. This study investigates the potential benefit of this instrument to improve weather forecasts thanks to a better initialization of the model. Our results show that a significant improvement can be expected in the model initialization in the first 3 km with potential impacts on weather forecasts.

Pauline Martinet, Domenico Cimini, Francesco De Angelis, Guylaine Canut, Vinciane Unger, Remi Guillot, Diane Tzanos, and Alexandre Paci

Choices and assumptions made to represent the state of the atmosphere introduce an uncertainty of 42% to the air mass factor calculation in trace gas satellite retrievals in polluted regions. The AMF strongly depends on the choice of a priori trace gas profile, surface albedo data set and the correction method to account for clouds and aerosols. We call for well-designed validation exercises focusing on situations when AMF structural uncertainty has the highest impact on satellite retrievals.

Alba Lorente, K. Folkert Boersma, Huan Yu, Steffen Dörner, Andreas Hilboll, Andreas Richter, Mengyao Liu, Lok N. Lamsal, Michael Barkley, Isabelle De Smedt, Michel Van Roozendael, Yang Wang, Thomas Wagner, Steffen Beirle, Jin-Tai Lin, Nickolay Krotkov, Piet Stammes, Ping Wang, Henk J. Eskes, and Maarten Krol

HNO3 concentrations are obtained from the IASI instrument and the data set is characterized for the first time in terms of vertical profiles, averaging kernels and error profiles. A validation is also conducted through a comparison with ground-based FTIR measurements, with good results. The data set is then used to analyse HNO3 spatial and temporal variability for the year 2011. The latitudinal gradient and the large seasonal variability in polar regions are well represented with IASI data.

G. Ronsmans, B. Langerock, C. Wespes, J. W. Hannigan, F. Hase, T. Kerzenmacher, E. Mahieu, M. Schneider, D. Smale, D. Hurtmans, M. De Mazière, C. Clerbaux, and P.-F. Coheur

Publications Copernicus